Author

Marcus Vinícius Canhoto Alves


Advisor

Jader Riso Barbosa Jr.


Date of publication

30/07/2014


Category

#Theses

Summary

In the production of natural gas, it is essential that all liquids are carried upwards by the flowing gas up to the separator. The accumu- lation of liquid in the well and the decrease in the gas capability to lift the liquid are natural processes associated with the ageing of the reservoir itself, but are also related to sensitivity of the properties of hydrocarbons to pressure and temperature variations during transient production. At a given point, a reduction in the gas momentum gives rise to an oscillatory motion of the liquid, which increases the pressure drop in the well, thereby reducing or even interrupting the production prematurely. To understand the phenomenon of liquid loading described above, it is necessary to understand the interaction between the well and the near wellbore region of the reservoir. Additionally, mathematical tools are needed to solve the two-phase flow of gas and liquid in the time and space domains. Despite the large number of works on gas-liquid flows in vertical channels available in the literature, these are mostly either empirical correlations or simplified models for the calculation of pressure drop and phase fractions at steady state. Although sim- ple relationships serve as criteria for the occurrence of liquid loading, they fail to describe the sequence of events that lead to the transition between the unidirectional and bidirectional (oscillatory) flow regimes. This work presents a one-dimensional differential model for calcu- lating gas-liquid transient flow in vertical tubes with high gas fractions (annular and churn flow patterns). Hyperbolic conservation equations for mass, momentum and energy are proposed for the gas and liquid phases, which is split between a continuous film and droplets entrained in the gas core. Closure relationships to calculate the wall and in- terfacial friction and the rates of droplet entrainment and deposition were obtained from the literature. A finite-difference solution algo- rithm based on the Split Coefficient Matrix Method was implemented to deal with sharp variations in the spatial and temporal domain, such as pressure and phases holdup waves. The model results were com- pared with steady-state experimental data from eight different sources, totaling more than 1300 data points for pressure gradient, liquid film flow rate and gas holdup. For these variables, the agreement between the model and the data was within less than ± 20%. The model was also compared against experimental data for transient gas-liquid flows in a 42-m long, 0.049-m ID vertical tube (WALTRICH, 2012). Pressure and flow rate-induced transients were simulated, with levels of agree- ment between the experimental data and the mathematical model also smaller than ± 20%.

Material for download

Access material

Know POSMEC

Learn more about one of the best post-graduate courses in mechanical engineering in Brazil

I want to know