Autor
Antônio José Luckmann
Orientador
Jader Riso Barbosa Jr.
Data de publicação
01/09/2010
Categoria
#Dissertações
Resumo
Nos últimos vinte anos, com a progressiva miniaturização de quipamentos e sistemas de engenharia e o conseqüente aumento das taxas com que calor é dissipado por unidade de área, diferentes tecnologias vêm sendo avaliadas para o resfriamento de altos fluxos de calor em componentes eletrônicos. Sistemas de resfriamento envolvendo a mudança de fase líquido-vapor de um fluido de trabalho, como termossifões bifásicos e ebulição em convecção forçada em microcanais, são atualmente experimentados em diversas aplicações. Dentre as alternativas mais promissoras, destaca-se o resfriamento por jatos bifásicos (spray cooling), o qual consiste na atomização de um fluido de trabalho no estado líquido através de um injetor (ou um arranjo de injetores) direcionado à superfície a ser resfriada. Dependendo das condições de operação, uma fina película de líquido pode cobrir totalmente a superfície aquecida e diferentes regimes de transferência de calor por ebulição podem se fazer presentes. Tais cenários proporcionam elevados valores do coeficiente de transferência de calor por convecção, fazendo com que um alto fluxo de calor possa ser removido mediante um pequeno grau de superaquecimento da superfície do aquecedor. Este trabalho apresenta uma análise teórica do processo de resfriamento com um único spray incidindo perpendicularmente a uma superfície plana voltada para cima. O modelo matemático para o campo de velocidades, temperaturas e concentração de gotículas por unidade de volume de spray é baseado em uma formulação de dois fluidos diferencial quasi-bidimensional que considera a variação radial dos campos de velocidade no spray por meio de perfis gaussianos. Um critério para a existência de um filme contínuo sobre a superfície aquecida é apresentado com base na relação entre a frequência com que as gotas atingem a superfície e o tempo de ciclo de vida das mesmas, o qual é definido com o tempo decorrido ao longo do impacto, espalhamento e secagem total de uma gota. Quando as condições de operação são tais que um filme líquido contínuo é formado, um modelo matemático é proposto para se determinar a variação da espessura da película em função da distância radial a partir do eixo de simetria do jato. Tal modelo é baseado em um balanço de quantidade de movimento no filme, levando em conta a transferência de quantidade de movimento ao filme por parte das gotas incidentes e assumindo que o perfil de velocidades no filme obedeça à lei-log universal. A transferência de calor por ebulição no filme fino é computada com base em um modelo de superposição onde a parcela de ebulição nucleada é computada por meio da correlação de Nishikawa para filmes líquidos finos. O modelo é verificado a partir de dados experimentais obtidos por diversos autores para fluidos de trabalho como água, FC-72 e R-134a, onde se observa uma concordância da ordem de ± 30%para o coeficiente de transferência de calor médio. Um modelo matemático também é apresentado para a transferência de calor no regime de filme líquido descontínuo, o qual é baseado naquele proposto por Aoki para a evaporação de uma gotícula impactando sobre uma superfície. O modelo proposto combina o modelo de Aoki para a fração da superfície coberta pelas gotas com um modelo para a convecção forçada monofásica na fração da superfície em contato direto com o vapor.
Material para download
Acesso o materialConheça o POSMEC
Saiba mais sobre um dos melhores programas de pós-graduação em engenharia mecânica do Brasil
Quero conhecer